New Refrigeration Method Relies on Ionocaloric Cooling

UC Berkeley scientists have developed a cooling method that could replace environmentally unfriendly refrigerants, while also delivering more efficient heating and cooling.

At first, two researchers at the University of California, Berkeley—Ravi Prasher, adjunct professor in mechanical engineering, and graduate student research assistant Drew Lilley—were working on a project for thermal energy storage with the goal of tuning the liquid/vapor phase transition temperature of a material using electricity. But both were struck by the possibility that they could tune a solid/liquid transition the same way.

This insight made Prasher and Lilley wonder how effective a solid/liquid transition would be in a thermodynamic cycle for refrigeration. Caloric effect-based cooling technologies, such as magneto- or electrocaloric refrigeration, have potential, but typically require large electric fields in return for relatively low coefficients of performance and adiabatic temperature change. If the team could create this high-efficiency cooling system with safe, low global warming potential refrigerants, this innovation could have a positive impact on the environment.

How it works

The researchers named their new method of heating and cooling “ionocaloric cooling.”
Ionocaloric cooling takes advantage of how energy, or heat, is stored or released when a material changes phases. For example, melting a material absorbs heat and solidifying it releases heat. Ionocaloric cooling uses ions that come from a salt to drive solid-to-liquid phase changes. When a current is added, ions flow and change the material from solid to liquid, causing the material to absorb heat from the surroundings. When the process is reversed and ions are removed, the material crystallizes into a solid, releasing heat.

Lilley and Prasher concluded that ionocaloric cooling has potential to compete with, or even exceed, the efficiency of gaseous refrigerants found in the majority of systems today.

They then demonstrated the technique experimentally. Lilley used a salt made with iodine and sodium, alongside ethylene carbonate, which is a safe, common organic solvent used in lithium-ion batteries. Ethylene carbonate has the potential to be global warming potential (GWP)-zero, or even GWP-negative, because it can be produced using carbon dioxide that is captured from other processes.

One of the biggest challenges was finding an ion exchange membrane that worked.
“Most ion exchange membranes are designed for aqueous media and we were using an organic solvent,” Prasher explained. “The organic solvent dissolved most of the membranes we tried, and the ones that survived usually saw very bad performance. We went through 16 different ion exchange membranes before finding one that was compatible with all the materials we used in the system.”

Another challenge was identifying the right material combinations for use in the ionocaloric cycle. “There were five or six variables associated with each material combination, which all had to align, so we had to be especially careful with our choices,” Lilley added.

The ionocaloric heat pump cycles between the solid/liquid states instead of the liquid/vapor states, as is currently done.

The first experiment showed a temperature change of 25 °C using less than one volt—a greater temperature lift than demonstrated by other caloric technologies. Theoretical and experimental results show higher adiabatic temperature change and entropy change per unit mass and volume compared with other caloric effects under low applied field strengths.

The biggest surprise for Prasher was on the theoretical side. When they calculated the maximum achievable efficiency of the ionocaloric cycle, the researchers saw numbers that hovered around 90 percent to 95 percent relative to Carnot (ideal thermodynamic cycle). “In contrast, the vapor compression systems with current state-of-the-art refrigerants have numbers more like 75 percent to 80 percent,” he said. “As a mechanical engineer, we were always taught that vapor compression is as close to an ideal cycle as anything that can be practically achieved, so I was really surprised and excited that the ionocaloric cycle can take a few steps further on the efficiency.”

Moving forward

Prasher and Lilley want to balance three things: the GWP of the refrigerant, energy efficiency, and the cost of the equipment itself. “From the first try, our data looks very promising on all three of these aspects,” Prasher said.

Prototype development is underway to test scalability and improve efficiency.

The team has also received a provisional patent for the ionocaloric refrigeration cycle and the technology is now available for licensing. Prasher and Lilley have formed a company, Calion Technologies, and are actively working to make a pilot-scale demonstration using ionocaloric technology.

To date, no one has successfully developed an alternative solution that “makes stuff cold, works efficiently, is safe, and doesn’t hurt the environment,” said Lilley. “We think the ionocaloric cycle has the potential to meet all these goals if realized appropriately.”

IMO - This is revolutionary


Revolutionary, fascinating (really!) underlying science, and another reminder that tech has enormous transformative potential if, if, if…

david fb


Very interesting

It does other things I was trying to think about six or seven years ago.

For instance what if a floor or wall in your home was made this way to heat the room.

This makes running an EV much more efficient in the winter time. The heating system will be more efficient. Assuming it runs in reverse. Or the transfer of heat is reversed more likely the way.

The gas stove top might be replaced.

1 Like

Yet another bit of breakthrough basic research being done by public university researchers. Not the private sector.



Ice Cream Cooling. Funded by the U.S. Department of Energy.

Ionocaloric refrigeration makes its debut, 1 February 2023
“It works on the same principle as an old-fashioned ice-cream freezer: Add salt to a material to lower the temperature of both. The researchers add sodium iodide salt to the solvent ethylene carbonate, which is solid above 35 °C. The process works because ions in the salt introduce an electrochemical field. Under the influence of a small voltage, the ions migrate through the solid, which changes its melting temperature.”

Ionocaloric refrigeration cycle, 22 Dec 2022
“Lilley and Prasher found that ions in solution can be used to control the melting and crystallization of a material, creating what the authors refer to as an ionocaloric cycle”

Cool it, with a pinch of salt, 22 Dec 2022
Melting a solvent with a salt and then desalinating it enables a reversible cooling cycle


Ice cream cooling is not a closed cycle. There is a lot more to ionocaloric cycle.

1 Like